NCERT Solutions Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations

Question 1:

Express the given complex number in the form $a+i b:(5 i)\left(-\frac{3}{5} i\right)$

Solution:

$$
\begin{aligned}
(5 i)\left(-\frac{3}{5} i\right) & =-5 i \times \frac{3}{5} \times i \\
& =-3 i^{2} \\
& =-3(-1) \\
& =3 \\
& =3+i 0
\end{aligned}
$$

Question 2:

Express the given complex number in the form $a+i b: i^{9}+i^{19}$

Solution:

$$
\begin{aligned}
i^{9}+i^{19} & =i^{4 \times 2+1}+i^{4 \times 4+3} \\
& =\left(i^{4}\right)^{2} \times i+\left(i^{4}\right)^{4} \times i^{3} \\
& =1 \times i+1 \times(-i) \quad\left[\because i^{4}=1, i^{3}=-i\right] \\
& =i+(-i) \\
& =0 \\
& =0+i 0
\end{aligned}
$$

Question 3:

Express the given complex number in the form $a+i b: i^{-39}$

Solution:

$$
\begin{array}{rlr}
i^{-39} & =i^{4 \times(-9)-3} \\
& =\left(i^{4}\right)^{-9} \times i^{-3} & \\
& =(1)^{-9} \times i^{-3} \quad\left[\because i^{4}=1\right] \\
& =\frac{1}{i^{3}} \\
& =\frac{1}{-i} & \\
& =-\frac{1}{i} \times \frac{i}{i} & \\
& =-\frac{i}{i^{2}} & \\
& =\frac{-i}{-1} & {\left[\because i^{3}=-i\right]} \\
& =i \\
& =0+i 1 &
\end{array}
$$

Question 4:

Express the given complex number in the form $a+i b: 3(7+i 7)+i(7+i 7)$

Solution:

$$
\begin{aligned}
3(7+i 7)+i(7+i 7) & =21+21 i+7 i+7 i^{2} \\
& =21+28 i+7 \times(-1) \quad\left[\because i^{2}=-1\right] \\
& =14+i) 8
\end{aligned}
$$

Question 5:

Express the given complex number in the form $a+i b:(1-i)-(-1+i 6)$

Solution:

$$
\begin{aligned}
(1-i)-(-1+i 6) & =1-i+1-6 i \\
& =2-i 7
\end{aligned}
$$

Question 6:

Express the given complex number in the form $a+i b:\left(\frac{1}{5}+i \frac{2}{5}\right)-\left(4+i \frac{5}{2}\right)$

Solution:

$$
\begin{aligned}
\left(\frac{1}{5}+i \frac{2}{5}\right)-\left(4+i \frac{5}{2}\right) & =\frac{1}{5}+\frac{2}{5} i-4-\frac{5}{2} i \\
& =\left(\frac{1}{5}-4\right)+i\left(\frac{2}{5}-\frac{5}{2}\right) \\
& =\left(-\frac{19}{5}\right)+i\left(-\frac{21}{10}\right) \\
& =-\frac{19}{5}-i \frac{21}{10}
\end{aligned}
$$

Question 7:

Express the given complex number in the form $a+i b:\left[\left(\frac{1}{3}+i \frac{7}{3}\right)+\left(4+i \frac{1}{3}\right)\right]-\left(-\frac{4}{3}+i\right)$
Solution:

$$
\begin{aligned}
{\left[\left(\frac{1}{3}+i \frac{7}{3}\right)+\left(4+i \frac{1}{3}\right)\right]-\left(-\frac{4}{3}+i\right) } & =\frac{1}{3}+\frac{7}{3} i+4+\frac{1}{3} i+\frac{4}{3}-i \\
& =\left(\frac{1}{3}+4+\frac{4}{3}\right)+i\left(\frac{7}{3}+\frac{1}{3}-1\right) \\
& =\frac{17}{3}+i \frac{5}{3}
\end{aligned}
$$

Question 8:

Express the given complex number in the form $a+i b:(1-i)^{4}$

Solution:

$$
\begin{aligned}
(1-i)^{4} & =\left[(1-i)^{2}\right]^{2} \\
& =\left[1^{2}+i^{2}-2 i\right]^{2} \\
& =[1-1-2 i]^{2} \\
& =[2 i]^{2} \\
& =4 i^{2} \quad\left(\because i^{2}=-1\right) \\
& =-4
\end{aligned}
$$

Question 9:

Express the given complex number in the form $a+i b:\left(\frac{1}{3}+3 i\right)^{3}$
Solution:

$$
\begin{aligned}
\left(\frac{1}{3}+3 i\right)^{3} & =\left(\frac{1}{3}\right)^{3}+(3 i)^{3}+3\left(\frac{1}{3}\right)(3 i)\left(\frac{1}{3}+3 i\right) \\
& =\frac{1}{27}+27 i^{3}+3 i\left(\frac{1}{3}+3 i\right) \\
& =\frac{1}{27}+27(-i)+i+9 i^{2} \quad\left(\because i^{3}=-i\right) \\
& =\frac{1}{27}-27 i+i-9 \quad\left(\because i^{2}=-1\right) \\
& =\left(\frac{1}{27}-9\right)-26 i \\
& =-\frac{242}{27}-i 26
\end{aligned}
$$

Question 10:

Express the given complex number in the form $a+i b:\left(-2-\frac{1}{3} i\right)^{3}$

Solution:

$$
\begin{aligned}
& \left(-2-\frac{1}{3} i\right)^{3}=(-1)^{3}\left(2+\frac{1}{3} i\right)^{3} \\
& =-\left[2^{3}+\left(\frac{i}{3}\right)^{3}+3(2)\left(\frac{i}{3}\right)\left(2+\frac{i}{3}\right)\right] \\
& =-\left[8+\frac{i^{3}}{27}+2 i\left(2+\frac{i}{3}\right)\right] \\
& =-\left[8-\frac{i}{27}+4 i+\frac{2}{3} i^{2}\right] \quad\left[\because i^{3}=-i\right] \\
& =-\left[8-\frac{i}{27}+4 i-\frac{2}{3}\right] \quad\left[\because i^{2}=-1\right] \\
& =-\left[\frac{22}{3}+\frac{107 i}{27}\right] \\
& =-\frac{22}{3}-i \frac{107}{77}
\end{aligned}
$$

Question 11:

Find the multiplicative inverse of the complex number $4-3 i$

Solution:

Let $z=4-3 i$
Then, $\bar{z}=4+3 i$ and

$$
\begin{aligned}
|z|^{2} & =4^{2}+(-3)^{2} \\
& =16+9 \\
& =25
\end{aligned}
$$

Therefore, the multiplicative inverse of $4-3 i$ is given by

$$
\begin{aligned}
z^{-1} & =\frac{\bar{z}}{|z|^{2}} \\
& =\frac{4+3 i}{25} \\
& =\frac{4}{25}+i \frac{3}{25}
\end{aligned}
$$

Question 12:

Find the multiplicative inverse of the complex number $\sqrt{5}+3 i$

Solution:

Let $z=\sqrt{5}+3 i$
Then, $\bar{z}=\sqrt{5}-3 i$ and

$$
\begin{aligned}
|z|^{2} & =(\sqrt{5})^{2}+3^{2} \\
& =5+9 \\
& =14
\end{aligned}
$$

Therefore, the multiplicative inverse of $\sqrt{5}+3 i$ is given by

$$
\begin{aligned}
z^{-1} & =\frac{\bar{z}}{|z|^{2}} \\
& =\frac{\sqrt{5}-3 i}{14} \\
& =\frac{\sqrt{5}}{14}-\frac{3}{14} i
\end{aligned}
$$

Question 13:
Find the multiplicative inverse of the complex number $-i$

Solution:

Let $z=-i$
Then, $\bar{z}=i$ and

$$
\begin{aligned}
|z|^{2} & =1^{2} \\
& =1
\end{aligned}
$$

Therefore, the multiplicative inverse of $-i$ is given by

$$
\begin{aligned}
z^{-1} & =\frac{\bar{z}}{|z|^{2}} \\
& =\frac{i}{1} \\
& =i
\end{aligned}
$$

Question 14:

Express the following expression in the form $a+i b$:

$$
\frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+\sqrt{2} i)-(\sqrt{3}-\sqrt{2} i)}
$$

Solution:

$$
\begin{array}{rlr}
\frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+\sqrt{2} i)-(\sqrt{3}-\sqrt{2} i)} & =\frac{(3)^{2}-(i \sqrt{5})^{2}}{\sqrt{3}+\sqrt{2} i-\sqrt{3}+\sqrt{2} i} & \\
& =\frac{9-5 i^{2}}{2 \sqrt{2} i} & \\
& =\frac{9-5(-1)}{2 \sqrt{2} i} & \\
& =\frac{9+5}{2 \sqrt{2} i} \\
& =\frac{14}{2 \sqrt{2} i} \times \frac{i}{i} & \\
& =\frac{7 i}{\sqrt{2} i^{2}} \\
& =\frac{7 i}{\sqrt{2}(-1)} \\
& =\frac{-7 i}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} & {\left[\because i^{2}=-1\right]} \\
& =\frac{-7 \sqrt{2} i}{2} & \\
& =0+i \frac{-7 \sqrt{2}}{2} &
\end{array}
$$

EXERCISE 5.2

Question 1:

Find the modulus and argument of the complex number $z=-1-i \sqrt{3}$

Solution:

$z=-1-i \sqrt{3}$
Let $r \cos \theta=-1$ and $r \sin \theta=-\sqrt{3}$

On squaring and adding, we obtain

$$
\left.\begin{array}{rl}
& (r \cos \theta)^{2}+(r \sin \theta)^{2}=(-1)^{2}+(-\sqrt{3})^{2} \\
\Rightarrow & r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+3 \\
\Rightarrow & r^{2}=4 \\
\Rightarrow & r=\sqrt{4}=2
\end{array} \quad\left[\because \cos ^{2} \theta+\sin ^{2} \theta=1\right] \quad \text { Conventionally, } r>0\right]
$$

Therefore, Modulus $=2$

Hence, $2 \cos \theta=-1$ and $2 \sin \theta=-\sqrt{3}$
$\Rightarrow \cos \theta=-\frac{1}{2}$ and $\sin \theta=-\frac{\sqrt{3}}{2}$

Since both the values of $\sin \theta$ and $\cos \theta$ are negative in III quadrant,

Argument $=-\left(\pi-\frac{\pi}{3}\right)=\frac{-2 \pi}{3}$
Thus, the modulus and argument of the complex number $-1-i \sqrt{3}$ are 2 and $\frac{-2 \pi}{3}$ respectively.

Question 2:

Find the modulus and argument of the complex number $z=-\sqrt{3}+i$

Solution:

$z=-\sqrt{3}+i$
Let $r \cos \theta=-\sqrt{3}$ and $r \sin \theta=1$

On squaring and adding, we obtain
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-\sqrt{3})^{2}+1^{2}$
$\Rightarrow r^{2}=3+1=4$
$\left[\because \cos ^{2} \theta+\sin ^{2} \theta=1\right]$
$\Rightarrow r=\sqrt{4}=2$
$\lceil\because$ Conventionally, $r>0\rceil$
Therefore, Modulus $=2$
Hence, $2 \cos \theta=-\sqrt{3}$ and $2 \sin \theta=1$
$\Rightarrow \cos \theta=-\frac{\sqrt{3}}{2}$ and $\sin \theta=\frac{1}{2}$
Since, θ lies in the quadrant II, $\quad \theta=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}$
Thus, the modulus and argument of the complex number $-\sqrt{3}+i$ are 2 and $\frac{5 \pi}{6}$ respectively.

Question 3:

Convert the given complex number in polar form: $1-i$

Solution:

$z=1-i$
Let $r \cos \theta=1$ and $r \sin \theta=-1$

On squaring and adding, we obtain

$$
\begin{aligned}
& r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=1^{2}+(-1)^{2} \\
\Rightarrow & r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1 \\
\Rightarrow & r^{2}=2
\end{aligned}
$$

$$
\Rightarrow r=\sqrt{2} \quad\lceil\because \text { Conventionally, } r>0\rceil
$$

Therefore,

$$
\begin{aligned}
& \sqrt{2} \cos \theta=1 \text { and } \sqrt{2} \sin \theta=-1 \\
& \Rightarrow \cos \theta=\frac{1}{\sqrt{2}} \text { and } \sin \theta=-\frac{1}{\sqrt{2}}
\end{aligned}
$$

Since, θ lies in the quadrant IV, $\theta=-\frac{\pi}{4}$
Hence,

$$
\begin{aligned}
1-i & =r \cos \theta+i r \sin \theta \\
& =\sqrt{2} \cos \left(-\frac{\pi}{4}\right)+i \sqrt{2} \sin \left(-\frac{\pi}{4}\right) \\
& =\sqrt{2}\left[\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right]
\end{aligned}
$$

Thus, this is the required polar form.

Question 4:

Convert the given complex number in polar form: $-1+i$

Solution:

$z=-1+i$
Let $r \cos \theta=-1$ and $r \sin \theta=1$

On squaring and adding, we obtain

$$
\begin{aligned}
& r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-1)^{2}+1^{2} \\
\Rightarrow & r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1 \\
\Rightarrow & r^{2}=2
\end{aligned}
$$

$$
\Rightarrow r=\sqrt{2} \quad\lceil\because \text { Conventionally, } r>0\rceil
$$

Therefore,

$$
\begin{aligned}
& \sqrt{2} \cos \theta=-1 \text { and } \sqrt{2} \sin \theta=1 \\
& \Rightarrow \cos \theta=-\frac{1}{\sqrt{2}} \text { and } \sin \theta=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Since, θ lies in the quadrant II, $\theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}$ Hence,

$$
\begin{aligned}
-1+i & =r \cos \theta+i r \sin \theta \\
& =\sqrt{2} \cos \frac{3 \pi}{4}+i \sqrt{2} \sin \frac{3 \pi}{4} \\
& =\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)
\end{aligned}
$$

Thus, this is the required polar form.

Question 5:

Convert the given complex number in polar form: $-1-i$

Solution:

$z=-1-i$
Let $r \cos \theta=-1$ and $r \sin \theta=-1$

On squaring and adding, we obtain

$$
\begin{aligned}
& r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-1)^{2}+(-1)^{2} \\
\Rightarrow & r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1 \\
\Rightarrow & r^{2}=2 \\
\Rightarrow & r=\sqrt{2}
\end{aligned}
$$

$$
\lceil\because \text { Conventionally, } r>0\rceil
$$

Therefore,

$$
\begin{aligned}
& \sqrt{2} \cos \theta=-1 \text { and } \sqrt{2} \sin \theta=-1 \\
& \Rightarrow \cos \theta=-\frac{1}{\sqrt{2}} \text { and } \sin \theta=-\frac{1}{\sqrt{2}}
\end{aligned}
$$

Since, θ lies in the quadrant III, $\theta=-\left(\pi-\frac{\pi}{4}\right)=-\frac{3 \pi}{4}$
Hence,

$$
\begin{aligned}
-1-i & =r \cos \theta+i r \sin \theta \\
& =\sqrt{2} \cos \frac{-3 \pi}{4}+i \sqrt{2} \sin \frac{-3 \pi}{4} \\
& =\sqrt{2}\left(\cos \frac{-3 \pi}{4}+i \sin \frac{-3 \pi}{4}\right)
\end{aligned}
$$

Thus, this is the required polar form.

Question 6:

Convert the given complex number in polar form: -3

Solution:

$z=-3$
Let $r \cos \theta=-3$ and $r \sin \theta=0$

On squaring and adding, we obtain

$$
\begin{aligned}
& r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-3)^{2}+(0)^{2} \\
\Rightarrow & r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=9 \\
\Rightarrow & r^{2}=9
\end{aligned}
$$

$$
\Rightarrow r=3 \quad[\because \text { Conventionally, } r>0]
$$

Therefore,

$$
\begin{aligned}
& 3 \cos \theta=-3 \text { and } 3 \sin \theta=0 \\
& \Rightarrow \cos \theta=-1 \text { and } \sin \theta=0
\end{aligned}
$$

Since the θ lies in the quadrant II, $\theta=\pi$
Hence,

$$
\begin{aligned}
-3 & =r \cos \theta+i r \sin \theta \\
& =3 \cos \pi+i 3 \sin \pi \\
& =3(\cos \pi+i \sin \pi)
\end{aligned}
$$

Thus, this is the required polar form.

Question 7:

Convert the given complex number in polar form: $\sqrt{3}+i$

Solution:

$z=\sqrt{3}+i$
Let $r \cos \theta=\sqrt{3}$ and $r \sin \theta=1$

On squaring and adding, we obtain

$$
\begin{aligned}
& r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(\sqrt{3})^{2}+1^{2} \\
\Rightarrow & r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=3+1 \\
\Rightarrow & r^{2}=4 \\
\Rightarrow & r=\sqrt{4}=2
\end{aligned}
$$

$$
\lceil\text { Conventionally, } r>0\rceil
$$

Therefore,

$$
\begin{aligned}
& 2 \cos \theta=\sqrt{3} \text { and } 2 \sin \theta=1 \\
& \Rightarrow \cos \theta=\frac{\sqrt{3}}{2} \text { and } \sin \theta=\frac{1}{2}
\end{aligned}
$$

Since, θ lies in quadrant $\mathrm{I}, \quad \theta=\frac{\pi}{6}$

Hence,

$$
\begin{aligned}
\sqrt{3}+i & =r \cos \theta+i r \sin \theta \\
& =2 \cos \frac{\pi}{6}+i 2 \sin \frac{\pi}{6} \\
& =2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)
\end{aligned}
$$

Thus, this is the required polar form.

Question 8:

Convert the given complex number in polar form: i

Solution:

$z=i$
Let $r \cos \theta=0$ and $r \sin \theta=1$

On squaring and adding, we obtain

$$
\begin{aligned}
& r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=0^{2}+1^{2} \\
\Rightarrow & r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1 \\
\Rightarrow & r^{2}=1 \\
\Rightarrow & r=\sqrt{1}=1
\end{aligned}
$$

$$
\text { [Conventionally, } r>0 \text {] }
$$

Therefore,

$$
\cos \theta=0 \text { and } \sin \theta=1
$$

Since, θ lies in quadrant $\mathrm{I}, \quad \theta=\frac{\pi}{2}$
Hence,

$$
\begin{aligned}
i & =r \cos \theta+i r \sin \theta \\
& =\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}
\end{aligned}
$$

Thus, this is the required polar form.

EXERCISE 5.3

Question 1:

Solve the equation $x^{2}+3=0$

Solution:

The given quadratic equation is $x^{2}+3=0$
On comparing the given equation with $a x^{2}+b x+c=0$,
We obtain $a=1, b=0$, and $c=3$

Therefore, the discriminant of the given equation is

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =0^{2}-4 \times 1 \times 3 \\
& =-12
\end{aligned}
$$

Therefore, the required solutions are

$$
\begin{array}{rlr}
\frac{-b \pm \sqrt{D}}{2 a} & =\frac{-0 \pm \sqrt{-12}}{2 \times 1} & \\
& =\frac{ \pm \sqrt{12} i}{2} & {[\because \sqrt{-1}=i]} \\
& =\frac{ \pm 2 \sqrt{3} i}{2} \\
& = \pm \sqrt{3} i
\end{array}
$$

Question 2:

Solve the equation $2 x^{2}+x+1=0$

Solution:

The given quadratic equation is $2 x^{2}+x+1=0$
On comparing the given equation with $a x^{2}+b x+c=0$,
We obtain $a=2, b=1$, and $c=1$

Therefore, the discriminant of the given equation is

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =1^{2}-4 \times 2 \times 1 \\
& =-7
\end{aligned}
$$

Therefore, the required solutions are

$$
\begin{array}{rlr}
\frac{-b \pm \sqrt{D}}{2 a} & =\frac{-1 \pm \sqrt{-7}}{2 \times 2} \\
& =\frac{-1 \pm \sqrt{7} i}{4} & {[\because \sqrt{-1}=i]}
\end{array}
$$

Question 3:

Solve the equation $x^{2}+3 x+9=0$

Solution:

The given quadratic equation is $x^{2}+3 x+9=0$
On comparing the given equation with $a x^{2}+b x+c=0$,
We obtain $a=1, b=3$, and $c=9$
Therefore, the discriminant of the given equation is

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =3^{2}-4 \times 1 \times 9 \\
& =-27
\end{aligned}
$$

Hence, the required solutions are

$$
\begin{aligned}
\frac{-b \pm \sqrt{D}}{2 a} & =\frac{-3 \pm \sqrt{-27}}{2 \times 1} \\
& =\frac{-3 \pm 3 \sqrt{-3}}{2} \\
& =\frac{-3 \pm 3 \sqrt{3} i}{2}
\end{aligned} \quad[\because \sqrt{-1}=i]
$$

Question4:

Solve the equation $-x^{2}+x-2=0$

Solution:

The given quadratic equation is $-x^{2}+x-2=0$
On comparing the given equation with $a x^{2}+b x+c=0$,
We obtain $a=-1, b=1$ and $c=-2$
Therefore, the discriminant of the given equation is

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =1^{2}-4 \times(-1) \times(-2) \\
& =-7
\end{aligned}
$$

Hence, the required solutions are

$$
\begin{array}{rlr}
\frac{-b \pm \sqrt{D}}{2 a} & =\frac{-1 \pm \sqrt{-7}}{2 \times(-1)} \\
& =\frac{-1 \pm \sqrt{7} i}{-2} & {[\sqrt{-1}=i]}
\end{array}
$$

Question 5:

Solve the equation $x^{2}+3 x+5=0$

Solution:

The given quadratic equation is $x^{2}+3 x+5=0$
On comparing the given equation with $a x^{2}+b x+c=0$,
We obtain $a=1, b=3$, and $c=5$
Therefore, the discriminant of the given equation is

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =3^{2}-4 \times 1 \times 5 \\
& =-11
\end{aligned}
$$

Hence, the required solutions are

$$
\begin{array}{rlr}
\frac{-b \pm \sqrt{D}}{2 a} & =\frac{-3 \pm \sqrt{-11}}{2 \times 1} & \\
& =\frac{-3 \pm \sqrt{11} i}{2} & {[\sqrt{-1}=i]}
\end{array}
$$

Question 6:

Solve the equation $x^{2}-x+2=0$

Solution:

The given quadratic equation is $x^{2}-x+2=0$
On comparing the given equation with $a x^{2}+b x+c=0$,
We obtain $a=1, b=-1$, and $c=2$
Therefore, the discriminant of the given equation is

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(-1)^{2}-4 \times 1 \times 2 \\
& =-7
\end{aligned}
$$

Hence, the required solutions are

$$
\begin{array}{rlr}
\frac{-b \pm \sqrt{D}}{2 a} & =\frac{-(-1) \pm \sqrt{-7}}{2 \times 1} & \\
& =\frac{1 \pm \sqrt{7} i}{2} & {[\because \sqrt{-1}=i]}
\end{array}
$$

Question 7:

Solve the equation $\sqrt{2} x^{2}-x+\sqrt{2}=0$

Solution:

The given quadratic equation is $\sqrt{2} x^{2}-x+\sqrt{2}=0$
On comparing the given equation with $a x^{2}+b x+c=0$,
We obtain $a=\sqrt{2}, b=-1$, and $c=\sqrt{2}$
Therefore, the discriminant of the given equation is

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(-1)^{2}-4 \times \sqrt{2} \times \sqrt{2} \\
& =-7
\end{aligned}
$$

Hence, the required solutions are

$$
\begin{array}{rlr}
\frac{-b \pm \sqrt{D}}{2 a} & =\frac{-(-1) \pm \sqrt{-7}}{2 \times \sqrt{2}} & \\
& =\frac{1 \pm \sqrt{7} i}{2 \sqrt{2}} & {[\because \sqrt{-1}=i]}
\end{array}
$$

Question 8:

Solve the equation $\sqrt{3} x^{2}-\sqrt{2} x+3 \sqrt{3}=0$

Solution:

The given quadratic equation is $\sqrt{3} x^{2}-\sqrt{2} x+3 \sqrt{3}=0$
On comparing the given equation with $a x^{2}+b x+c=0$,

We obtain $a=\sqrt{3}, b=-\sqrt{2}$, and $c=3 \sqrt{3}$

Therefore, the discriminant of the given equation is

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(-\sqrt{2})^{2}-4 \times(\sqrt{3}) \times(3 \sqrt{3}) \\
& =-34
\end{aligned}
$$

Hence, the required solutions are

$$
\begin{array}{rlr}
\frac{-b \pm \sqrt{D}}{2 a} & =\frac{-(-\sqrt{2}) \pm \sqrt{-34}}{2 \times \sqrt{3}} \\
& =\frac{\sqrt{2} \pm \sqrt{34} i}{2 \sqrt{3}} & {[\because \sqrt{-1}=i]}
\end{array}
$$

Question 9:

Solve the equation $x^{2}+x+\frac{1}{\sqrt{2}}=0$

Solution:

The given quadratic equation is $x^{2}+x+\frac{1}{\sqrt{2}}=0$
This equation can also be written as $\sqrt{2} x^{2}+\sqrt{2} x+1=0$
On comparing the given equation with $a x^{2}+b x+c=0$,
We obtain $a=\sqrt{2}, b=\sqrt{2}$ and $c=1$
Therefore, the discriminant of the given equation is

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(\sqrt{2})^{2}-4 \times(\sqrt{2}) \times 1 \\
& =2-4 \sqrt{2}
\end{aligned}
$$

Hence, the required solutions are

$$
\begin{aligned}
\frac{-b \pm \sqrt{D}}{2 a} & =\frac{-\sqrt{2} \pm \sqrt{2-4 \sqrt{2}}}{2 \times \sqrt{2}} \\
& =\frac{-\sqrt{2} \pm \sqrt{2(1-2 \sqrt{2})}}{2 \sqrt{2}} \\
& =\left(\frac{-\sqrt{2} \pm \sqrt{2}(\sqrt{2 \sqrt{2}-1}) i}{2 \sqrt{2}}\right) \quad[\because \sqrt{-1}=i] \\
& =\frac{-1 \pm(\sqrt{2 \sqrt{2}-1}) i}{2}
\end{aligned}
$$

Question 10:

Solve the equation $x^{2}+\frac{x}{\sqrt{2}}+1=0$

Solution:

The given quadratic equation is $x^{2}+\frac{x}{\sqrt{2}}+1=0$
This equation can also be written as $\sqrt{2} x^{2}+x+\sqrt{2}=0$
On comparing the given equation with $a x^{2}+b x+c=0$,
We obtain $a=\sqrt{2}, b=1$ and $c=\sqrt{2}$
Therefore, the discriminant of the given equation is

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(1)^{2}-4 \times(\sqrt{2}) \times(\sqrt{2}) \\
& =1-8 \\
& =-7
\end{aligned}
$$

Hence, the required solutions are

$$
\begin{array}{rlr}
\frac{-b \pm \sqrt{D}}{2 a} & =\frac{-1 \pm \sqrt{-7}}{2 \times \sqrt{2}} & \\
& =\frac{-1 \pm \sqrt{7} i}{2 \sqrt{2}} & {[\because \sqrt{-1}=i]}
\end{array}
$$

MISCELLANEOUS EXERCISE

Question 1:

Evaluate: $\left[i^{18}+\left(\frac{1}{i}\right)^{25}\right]^{3}$

Solution:

$$
\begin{array}{rlr}
{\left[i^{18}+\left(\frac{1}{i}\right)^{25}\right]^{3}} & =\left[i^{4 \times 4+2}+\frac{1}{i^{4 \times 6+1}}\right]^{3} \\
& =\left[\left(i^{4}\right)^{4} \times i^{2}+\frac{1}{\left(i^{4}\right)^{6} \times i}\right]^{3} & \\
& =\left[i^{2}+\frac{1}{i}\right]^{3} & {\left[\because i^{4}=1\right]} \\
& =\left[-1+\frac{1}{i} \times \frac{i}{i}\right]^{3} & {\left[\because i^{2}=-1\right]} \\
& =\left[-1+\frac{i}{i^{2}}\right]^{3} \\
& =[-1-i]^{3} \\
& =(-1)^{3}[1+i]^{3} \\
& =-\left[1^{3}+i^{3}+3 \times 1 \times i(1+i)\right] \\
& =-\left[1+i^{3}+3 i+3 i^{2}\right] \\
& =-[1-i+3 i-3] \\
& =-[-2+2 i] \\
& =2-2 i
\end{array}
$$

Question 2:

For any two complex numbers z_{1} and z_{2}, prove that
$\operatorname{Re}\left(z_{1} z_{2}\right)=\operatorname{Re} z_{1} \operatorname{Re} z_{2}-\operatorname{Im} z_{1} \operatorname{Im} z_{2}$

Solution:

Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$

$$
\begin{aligned}
& z_{1} z_{2}=\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right) \\
&=x_{1}\left(x_{2}+i y_{2}\right)+i y_{1}\left(x_{2}+i y_{2}\right) \\
&=x_{1} x_{2}+i x_{1} y_{2}+i y_{1} x_{2}+i^{2} y_{1} y_{2} \\
&=x_{1} x_{2}+i x_{1} y_{2}+i y_{1} x_{2}-y_{1} y_{2} \\
&=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+y_{1} x_{2}\right) \\
& \Rightarrow \operatorname{Re}\left(z_{1} z_{2}\right)=x_{1} x_{2}-y_{1} y_{2} \\
& \Rightarrow \operatorname{Re}\left(z_{1} z_{2}\right)=\operatorname{Re} z_{1} \operatorname{Re} z_{2}-\operatorname{Im} z_{1} \operatorname{Im} z_{2}
\end{aligned}
$$

Hence, proved.

Question 3:
Reduce $\left(\frac{1}{1-4 i}-\frac{2}{1+i}\right)\left(\frac{3-4 i}{5+i}\right)$ to the standard form

Solution:

$$
\begin{aligned}
\left(\frac{1}{1-4 i}-\frac{2}{1+i}\right)\left(\frac{3-4 i}{5+i}\right) & =\left[\frac{(1+i)-2(1-4 i)}{(1-4 i)(1+i)}\right]\left[\frac{3-4 i}{5+i}\right] \\
& =\left[\frac{1+i-2+8 i}{1+i-4 i-4 i^{2}}\right]\left[\frac{3-4 i}{5+i}\right] \\
& =\left[\frac{-1+9 i}{5-3 i}\right]\left[\frac{3-4 i}{5+i}\right] \\
& =\left[\frac{-3+4 i+27 i-36 i^{2}}{25+5 i-15 i-3 i^{2}}\right] \\
& =\frac{33+31 i}{28-10 i} \\
& =\frac{33+31 i}{2(14-5 i)} \\
& =\frac{(33+31 i)}{2(14-5 i)} \times \frac{(14+5 i)}{(14+5 i)} \\
& =\frac{462+165 i+434 i+155 i^{2}}{2\left[(14)^{2}-(5 i)^{2}\right]} \\
& =\frac{307+599 i}{2\left(196-25 i^{2}\right)} \\
& =\frac{307+599 i}{2(221)} \\
& =\frac{307}{442}+\frac{599}{442} i
\end{aligned}
$$

This is the required standard form.

Question 4:

If $x-i y=\sqrt{\frac{a-i b}{c-i d}}$ prove that $\left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$

Solution:

$$
\begin{aligned}
x-i y & =\sqrt{\frac{a-i b}{c-i d}}=\sqrt{\frac{a-i b}{c-i d} \times \frac{c+i d}{c+i d}} \\
& =\sqrt{\frac{(a c+b d)+i(a d-b c)}{c^{2}+d^{2}}} \\
(x-i y)^{2} & =\frac{(a c+b d)+i(a d-b c)}{c^{2}+d^{2}} \\
x^{2}-y^{2}-2 i x y & =\frac{(a c+b d)}{c^{2}+d^{2}}+i \frac{(a d-b c)}{c^{2}+d^{2}}
\end{aligned}
$$

On comparing real and imaginary parts, we obtain

$$
\begin{equation*}
x^{2}-y^{2}=\frac{a c+b d}{c^{2}+d^{2}},-2 x y=\frac{a d-b c}{c^{2}+d^{2}} \tag{1}
\end{equation*}
$$

Since,

$$
\begin{align*}
\left(x^{2}+y^{2}\right)^{2} & =\left(x^{2}-y^{2}\right)^{2}+(2 x y)^{2} \\
& =\left(\frac{a c+b d}{c^{2}+d^{2}}\right)^{2}+\left(\frac{a d-b c}{c^{2}+d^{2}}\right)^{2} \tag{1}\\
& =\frac{a^{2} c^{2}+b^{2} d^{2}+2 a c b d+a^{2} d^{2}+b^{2} c^{2}-2 a b c d}{\left(c^{2}+d^{2}\right)^{2}} \\
& =\frac{a^{2} c^{2}+b^{2} d^{2}+a^{2} d^{2}+b^{2} c^{2}}{\left(c^{2}+d^{2}\right)^{2}} \\
& =\frac{a^{2}\left(c^{2}+d^{2}\right)+b^{2}\left(c^{2}+d^{2}\right)}{\left(c^{2}+d^{2}\right)^{2}} \\
& =\frac{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}{\left(c^{2}+d^{2}\right)^{2}} \\
& =\frac{\left(a^{2}+b^{2}\right)}{\left(c^{2}+d^{2}\right)}
\end{align*}
$$

Hence, proved.

Question 5:

Convert the following in the polar form:
(i) $\frac{1+7 i}{(2-i)^{2}}$
(ii) $\frac{1+3 i}{1-2 i}$

Solution:

(i) Here,

$$
\begin{aligned}
z & =\frac{1+7 i}{(2-i)^{2}} \\
& =\frac{1+7 i}{(2-i)^{2}}=\frac{1+7 i}{4+i^{2}-4 i}=\frac{1+7 i}{4-1-4 i} \\
& =\frac{1+7 i}{3-4 i} \times \frac{3+4 i}{3+4 i}=\frac{3+4 i+21 i+28 i^{2}}{3^{2}+4^{2}} \\
& =\frac{3+25 i-28}{25}=\frac{-25+25 i}{25} \\
& =-1+i
\end{aligned}
$$

Let $r \cos \theta=-1$ and $r \sin \theta=1$

On squaring and adding, we obtain

$$
\begin{aligned}
& r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-1)^{2}+1^{2} \\
& r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1 \\
& r^{2}=2 \\
& r=\sqrt{2}
\end{aligned}
$$

[Conventionally, $r>0$]
Therefore,

$$
\begin{aligned}
& \sqrt{2} \cos \theta=-1 \text { and } \sqrt{2} \sin \theta=1 \\
& \Rightarrow \cos \theta=-\frac{1}{\sqrt{2}} \text { and } \sin \theta=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Since, θ lies in the quadrant II, $\theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}$ Hence,

$$
\begin{aligned}
z & =r \cos \theta+i r \sin \theta \\
& =\sqrt{2} \cos \frac{3 \pi}{4}+i \sqrt{2} \sin \frac{3 \pi}{4} \\
& =\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)
\end{aligned}
$$

This is the required polar form.
(ii) Here,

$$
\begin{aligned}
z & =\frac{1+3 i}{1-2 i} \\
& =\frac{1+3 i}{1-2 i} \times \frac{1+2 i}{1+2 i} \\
& =\frac{1+2 i+3 i+6 i^{2}}{1^{2}+2^{2}}=\frac{1+5 i-6}{5} \\
& =\frac{-5+5 i}{5}=-1+i
\end{aligned}
$$

Let $r \cos \theta=-1$ and $r \sin \theta=1$
On squaring and adding, we obtain

$$
\begin{aligned}
& r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=(-1)^{2}+1^{2} \\
& r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1 \\
& r^{2}=2 \\
& r=\sqrt{2}
\end{aligned}
$$

$$
\text { [Conventionally, } r>0 \text {] }
$$

Therefore,

$$
\begin{aligned}
& \sqrt{2} \cos \theta=-1 \text { and } \sqrt{2} \sin \theta=1 \\
& \Rightarrow \cos \theta=-\frac{1}{\sqrt{2}} \text { and } \sin \theta=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Since, θ lies in the quadrant II, $\theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}$
Hence,

$$
\begin{aligned}
z & =r \cos \theta+i r \sin \theta \\
& =\sqrt{2} \cos \frac{3 \pi}{4}+i \sqrt{2} \sin \frac{3 \pi}{4} \\
& =\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)
\end{aligned}
$$

This is the required polar form.

Question 6:

Solve the equation $3 x^{2}-4 x+\frac{20}{3}=0$

Solution:

The given quadratic equation is $3 x^{2}-4 x+\frac{20}{3}=0$
This equation can also be written as $9 x^{2}-12 x+20=0$

On comparing this equation with $a x^{2}+b x+c=0$, we obtain $a=9, b=-12$ and $c=20$
Therefore, the discriminant of the given equation is

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(-12)^{2}-4 \times 9 \times 20 \\
& =144-720 \\
& =-576
\end{aligned}
$$

Hence, the required solutions are

$$
\begin{array}{rlr}
\frac{-b \pm \sqrt{D}}{2 a} & =\frac{-(-12) \pm \sqrt{-576}}{2 \times 9} \\
& =\frac{12 \pm \sqrt{576} i}{18} & \quad[\because \sqrt{-1}=i] \\
& =\frac{12 \pm 24 i}{18} \\
& =\frac{6(2 \pm 4 i)}{18} \\
& =\frac{2 \pm 4 i}{3} \\
& =\frac{2}{3} \pm \frac{4}{3} i
\end{array}
$$

Question 7:

Solve the equation $x^{2}-2 x+\frac{3}{2}=0$

Solution:

The given quadratic equation is $x^{2}-2 x+\frac{3}{2}=0$
This equation can also be written as $2 x^{2}-4 x+3=0$
On comparing this equation with $a x^{2}+b x+c=0$, we obtain $a=2, b=-4$ and $c=3$

Therefore, the discriminant of the given equation is

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(-4)^{2}-4 \times 2 \times 3 \\
& =16-24 \\
& =-8
\end{aligned}
$$

Hence, the required solutions are

$$
\begin{array}{rlr}
\frac{-b \pm \sqrt{D}}{2 a} & =\frac{-(-4) \pm \sqrt{-8}}{2 \times 2} & \\
& =\frac{4 \pm 2 \sqrt{2} i}{4} & \\
& =\frac{2 \pm \sqrt{2} i}{2} & \\
& =1 \pm \frac{\sqrt{2}}{2} i &
\end{array}
$$

Question 8:

Solve the equation $27 x^{2}-10 x+1=0$

Solution:

The given quadratic equation is $27 x^{2}-10 x+1=0$

On comparing this equation with $a x^{2}+b x+c=0$, we obtain
$a=27, b=-10$ and $c=1$

Therefore, the discriminant of the given equation is

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(-10)^{2}-4 \times 27 \times 1 \\
& =100-108 \\
& =-8
\end{aligned}
$$

Hence, the required solutions are

$$
\begin{array}{rlr}
\frac{-b \pm \sqrt{D}}{2 a} & =\frac{-(-10) \pm \sqrt{-8}}{2 \times 27} \\
& =\frac{10 \pm 2 \sqrt{2} i}{54} & \\
& =\frac{5 \pm \sqrt{2} i}{27} & \\
& =\frac{5}{27} \pm \frac{\sqrt{2}}{27} i
\end{array}
$$

Question 9:

Solve the equation $21 x^{2}-28 x+10=0$

Solution:

The given quadratic equation is $21 x^{2}-28 x+10=0$
On comparing this equation with $a x^{2}+b x+c=0$, we obtain $a=21, b=-28$ and $c=10$

Therefore, the discriminant of the given equation is

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(-28)^{2}-4 \times 21 \times 10 \\
& =784-840 \\
& =-56
\end{aligned}
$$

Hence, the required solutions are

$$
\begin{aligned}
\frac{-b \pm \sqrt{D}}{2 a} & =\frac{-(-28) \pm \sqrt{-56}}{2 \times 21} \\
& =\frac{28 \pm \sqrt{56} i}{42} \\
& =\frac{28 \pm 2 \sqrt{14} i}{42} \\
& =\frac{28}{42} \pm \frac{2 \sqrt{14}}{42} i \\
& =\frac{2}{3} \pm \frac{\sqrt{14}}{21} i
\end{aligned}
$$

Question 10:

If $z_{1}=2-i, z_{2}=1+i$, find $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|$

Solution:

$z_{1}=2-i, z_{2}=1+i$
Therefore,

$$
\begin{aligned}
\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right| & =\left|\frac{(2-i)+(1+i)+1}{(2-i)-(1+i)+1}\right| \\
& =\left|\frac{4}{2-2 i}\right|=\left|\frac{4}{2(1-i)}\right| \\
& =\left|\frac{2}{1-i} \times \frac{1+i}{1+i}\right|=\left|\frac{2(1+i)}{\left(1^{2}-i^{2}\right)}\right| \\
& =\left|\frac{2(1+i)}{1+1}\right| \quad\left[i^{2}=-1\right] \\
& =\left|\frac{2(1+i)}{2}\right| \\
& =|1+i|=\sqrt{1^{2}+1^{2}} \\
& =\sqrt{2}
\end{aligned}
$$

Thus, the value of $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|$ is $\sqrt{2}$.

Question 11:

If $a+i b=\frac{(x+i)^{2}}{2 x^{2}+1}$, prove that $a^{2}+b^{2}=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}$

Solution:

$$
\begin{aligned}
a+i b & =\frac{(x+i)^{2}}{2 x^{2}+1} \\
a+i b & =\frac{(x+i)^{2}}{2 x^{2}+1}=\frac{x^{2}+i^{2}+i 2 x}{2 x^{2}+1} \\
& =\frac{x^{2}-1+i 2 x}{2 x^{2}+1} \\
& =\frac{x^{2}-1}{2 x^{2}+1}+i\left(\frac{2 x}{2 x^{2}+1}\right)
\end{aligned}
$$

On comparing real and imaginary parts, we obtain
$a=\frac{x^{2}-1}{2 x^{2}+1}$ and $b=\frac{2 x}{2 x^{2}+1}$
Since,

$$
\begin{aligned}
a^{2}+b^{2} & =\left(\frac{x^{2}-1}{2 x^{2}+1}\right)^{2}+\left(\frac{2 x}{2 x^{2}+1}\right)^{2} \\
& =\frac{x^{4}+1-2 x^{2}+4 x^{2}}{\left(2 x^{2}+1\right)^{2}} \\
& =\frac{x^{4}+1+2 x^{2}}{\left(2 x^{2}+1\right)^{2}} \\
a^{2}+b^{2} & =\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}
\end{aligned}
$$

Hence, proved.

Question 12:

Let $z_{1}=2-i, z_{2}=-2+i$. Find
(i) $\operatorname{Re}\left(\frac{z_{1} z_{2}}{\bar{z}_{1}}\right)$,
(ii) $\operatorname{Im}\left(\frac{1}{z_{1} \bar{z}_{1}}\right)$

Solution:

(i) It is given that $z_{1}=2-i, z_{2}=-2+i$

$$
\begin{aligned}
z_{1} z_{2} & =(2-i)(-2+i) \\
& =-4+2 i+2 i-i^{2} \\
& =-4+4 i-(-1) \\
& =-3+4 i
\end{aligned}
$$

Now, $\bar{z}_{1}=2+i$
Hence, $\frac{z_{1} z_{2}}{\bar{z}_{1}}=\frac{-3+4 i}{2+i}$
On multiplying numerator and denominator by $(2-i)$, we obtain

$$
\begin{aligned}
\frac{z_{1} z_{2}}{\bar{z}_{1}} & =\frac{(-3+4 i)(2-i)}{(2+i)(2-i)}=\frac{-6+3 i+8 i-4 i^{2}}{2^{2}+1^{2}}=\frac{-6+11 i-4(-1)}{5} \\
& =\frac{-2+11 i}{5}=\frac{-2}{5}+\frac{11}{5} i
\end{aligned}
$$

On comparing real parts, we obtain

$$
\operatorname{Re}\left(\frac{z_{1} z_{2}}{\bar{z}_{1}}\right)=-\frac{2}{5}
$$

(ii) $\frac{1}{z_{1} \bar{z}_{1}}=\frac{1}{(2+i)(2-i)}=\frac{1}{(2)^{2}+(1)^{2}}=\frac{1}{5}$

On comparing imaginary parts, we obtain

$$
\operatorname{Im}\left(\frac{1}{z_{1} \bar{z}_{1}}\right)=0
$$

Question 13:

Find the modulus and argument of the complex number $\frac{1+2 i}{1-3 i}$

Solution:

Let $z=\frac{1+2 i}{1-3 i}$,
Then,

$$
\begin{aligned}
z & =\frac{1+2 i}{1-3 i} \times \frac{1+3 i}{1+3 i}=\frac{1+2 i+3 i+6 i^{2}}{1^{2}+3^{2}}=\frac{1+5 i+6(-1)}{10} \\
& =\frac{-5+5 i}{10}=\frac{-5}{10}+\frac{5}{10} i=\frac{-1}{2}+\frac{1}{2} i
\end{aligned}
$$

Let $z=r \cos \theta+i r \sin \theta$
i.e., $r \cos \theta=-\frac{1}{2}$ and $r \sin \theta=\frac{1}{2}$

On squaring and adding, we obtain

$$
\begin{aligned}
& r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\left(-\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2} \\
\Rightarrow & r^{2}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \\
\Rightarrow & r=\frac{1}{\sqrt{2}} \quad \quad \text { [Conventionally, } r>0 \text {] }
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \frac{1}{\sqrt{2}} \cos \theta=-\frac{1}{2} \text { and } \frac{1}{\sqrt{2}} \sin \theta=\frac{1}{2} \\
& \Rightarrow \cos \theta=\frac{-1}{\sqrt{2}} \text { and } \sin \theta=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Since, θ lies in the quadrant II, $\theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}$

Thus, the modulus and argument of the given complex number are $\frac{1}{\sqrt{2}}$ and $\frac{3 \pi}{4}$ respectively.

Question 14:

Find the real numbers x and $y_{\text {if }}(x-i y)(3+5 i)$ is the conjugate of $-6-24 i$

Solution:

Let,

$$
\begin{aligned}
z & =(x-i y)(3+5 i) \\
& =3 x-i 3 y+i 5 x-i^{2} 5 y \\
& =3 x+i 5 x-i 3 y+5 y \\
& =(3 x+5 y)+i(5 x-3 y)
\end{aligned}
$$

Then, $\bar{z}=(3 x+5 y)-i(5 x-3 y)$
It is given that, $\bar{z}=-6-24 i$

Therefore, $(3 x+5 y)-i(5 x-3 y)=-6-24 i$
Equating real and imaginary parts, we obtain

$$
\begin{align*}
& 3 x+5 y=-6 \tag{1}\\
& 5 x-3 y=24 \tag{2}
\end{align*}
$$

Multiplying equation (1) by 3 and equation (2) by 5 and then adding them, we obtain

$$
\begin{aligned}
& 9 x+15 y=-18 \\
& 25 x-15 y=120
\end{aligned}
$$

On adding both equations we get,

$$
\begin{aligned}
34 x & =102 \\
x & =\frac{102}{34} \\
x & =3
\end{aligned}
$$

Putting the value of x in equation (1), we obtain

$$
\begin{aligned}
3(3)+5 y & =-6 \\
5 y & =-6-9 \\
y & =\frac{-15}{5} \\
y & =-3
\end{aligned}
$$

Thus, the values of $x=3$ and $y=-3$

Question 15:

Find the modulus of $\frac{1+i}{1-i}-\frac{1-i}{1+i}$

Solution:

$$
\begin{aligned}
\frac{1+i}{1-i}-\frac{1-i}{1+i} & =\frac{(1+i)^{2}-(1-i)^{2}}{(1-i)(1+i)} \\
& =\frac{1+i^{2}+2 i-1-i^{2}+2 i}{2} \\
& =\frac{4 i}{2} \\
& =2 i
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left|\frac{1+i}{1-i}-\frac{1-i}{1+i}\right| & =|2 i| \\
& =\sqrt{2^{2}} \\
& =2
\end{aligned}
$$

Question 16:

If $(x+i y)^{3}=u+i v$, then show that $\frac{u}{x}+\frac{v}{y}=4\left(x^{2}-y^{2}\right)$

Solution:

It is given that $(x+i y)^{3}=u+i v$

$$
\begin{aligned}
& \Rightarrow x^{3}+(i y)^{3}+3 \times x \times i y(x+i y)=u+i v \\
& \Rightarrow x^{3}+i^{3} y^{3}+3 x^{2} y i+3 x y^{2} i^{2}=u+i v \\
& \Rightarrow x^{3}-i y^{3}+3 x^{2} y i-3 x y^{2}=u+i v \\
& \Rightarrow\left(x^{3}-3 x y^{2}\right)+i\left(3 x^{2} y-y^{3}\right)=u+i v
\end{aligned}
$$

On equating real and imaginary parts, we obtain

$$
u=x^{3}-3 x y^{2}, v=3 x^{2} y-y^{3}
$$

Therefore,

$$
\begin{aligned}
\frac{u}{x}+\frac{v}{y} & =\frac{x^{3}-3 x y^{2}}{x}+\frac{3 x^{2} y-y^{3}}{y} \\
& =\frac{x\left(x^{2}-3 y^{2}\right)}{x}+\frac{y\left(3 x^{2}-y^{2}\right)}{y} \\
& =x^{2}-3 y^{2}+3 x^{2}-y^{2} \\
& =4 x^{2}-4 y^{2} \\
& =4\left(x^{2}-y^{2}\right)
\end{aligned}
$$

Hence, $\frac{u}{x}+\frac{v}{y}=4\left(x^{2}-y^{2}\right)$ proved.

Question 17:

If α and β are different complex numbers with $|\beta|=1$, then find $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$

Solution:

Let $\alpha=a+i b$ and $\beta=x+i y$

It is given that, $|\beta|=1$
Therefore,

$$
\begin{align*}
\sqrt{x^{2}+y^{2}} & =1 \\
x^{2}+y^{2} & =1 \tag{i}
\end{align*}
$$

$$
\begin{aligned}
\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right| & =\left|\frac{(x+i y)-(a+i b)}{1-(a-i b)(x+i y)}\right| \\
& =\left|\frac{(x-a)+i(y-b)}{1-(a x+i a y-i b x+b y)}\right| \\
& =\left|\frac{(x-a)+i(y-b)}{(1-a x-b y)+i(b x-a y)}\right| \\
& =\frac{|(x-a)+i(y-b)|}{|(1-a x-b y)+i(b x-a y)|} \quad\left[\left.\because\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \right\rvert\,\right] \\
\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right| & =\frac{\sqrt{(x-a)^{2}+(y-b)^{2}}}{\sqrt{(1-a x-b y)^{2}+(b x-a y)^{2}}} \\
& =\frac{\sqrt{x^{2}+a^{2}-2 a x+y^{2}+b^{2}-2 b y}}{\sqrt{1+a^{2} x^{2}+b^{2} y^{2}-2 a x+2 a b x y-2 b y+b^{2} x^{2}+a^{2} y^{2}-2 a b x y}} \\
& =\frac{\sqrt{\left(x^{2}+y^{2}\right)+a^{2}+b^{2}-2 a x-2 b y}}{\sqrt{1+a^{2}\left(x^{2}+y^{2}\right)+b^{2}\left(y^{2}+x^{2}\right)-2 a x-2 b y}} \\
& =\frac{\sqrt{1+a^{2}+b^{2}-2 a x-2 b y}}{\sqrt{1+a^{2}+b^{2}-2 a x-2 b y}} \\
& =1
\end{aligned}
$$

Thus, $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|=1$

Question 18:

Find the number of non-zero integral solutions of the equation $|1-i|^{x}=2^{x}$

Solution:

$$
\begin{aligned}
|1-i|^{x} & =2^{x} \\
\left(\sqrt{1^{2}+(-1)^{2}}\right) & =2^{x} \\
(\sqrt{2})^{x} & =2^{x} \\
2^{x / 2} & =2^{x} \\
\frac{x}{2} & =x \\
x & =2 x \\
2 x-x & =0 \\
x & =0
\end{aligned}
$$

Thus, 0 is the only integral solution of the given equation.
Therefore, the number of non-zero integral solutions of the given equation is 0 .

Question 19:

If $(a+i b)(c+i d)(e+i f)(g+i h)=A+i B$, then show that:
$\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=A^{2}+B^{2}$

Solution:

It is given that, $(a+i b)(c+i d)(e+i f)(g+i h)=A+i B$
Therefore,

$$
\begin{aligned}
& |(a+i b)(c+i d)(e+i f)(g+i h)|=|A+i B| \\
& |(a+i b)| \times|(c+i d)| \times|(e+i f)| \times|(g+i h)|=|A+i B| \quad \quad\left[\because\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|\right] \\
& \sqrt{a^{2}+b^{2}} \times \sqrt{c^{2}+d^{2}} \times \sqrt{e^{2}+f^{2}} \times \sqrt{g^{2}+h^{2}}=\sqrt{A^{2}+B^{2}} \\
& \sqrt{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)}=\sqrt{A^{2}+B^{2}}
\end{aligned}
$$

On squaring both sides, we obtain

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=A^{2}+B^{2}
$$

Hence, proved.

Question 20:

If $\left(\frac{1+i}{1-i}\right)^{m}=1$ then find the least positive integral value of m.

Solution:

It is given that $\left(\frac{1+i}{1-i}\right)^{m}=1$

$$
\begin{gathered}
\left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^{m}=1 \\
\left(\frac{(1+i)^{2}}{1^{2}+1^{2}}\right)^{m}=1
\end{gathered}
$$

$$
\left(\frac{1^{2}+i^{2}+2 i}{2}\right)^{m}=1
$$

$$
\left(\frac{1-1+2 i}{2}\right)^{m}=1
$$

$$
\left(\frac{2 i}{2}\right)^{m}=1
$$

$$
i^{m}=1
$$

$$
i^{m}=i^{4 k}
$$

Hence, $m=4 k$, where k is some integer.
Since, the least positive integer is $1, m=4 \times 1=4$
Thus, the least positive integral value of $m=4$

