NCERT Solutions Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations

Question 1:

Express the given complex number in the form a+ib: $(5i)\left(-\frac{3}{5}i\right)$

Solution:

$$(5i)\left(-\frac{3}{5}i\right) = -5i \times \frac{3}{5} \times i$$
$$= -3i^{2} \qquad \left[\because i^{2} = -1\right]$$
$$= -3(-1)$$
$$= 3$$
$$= 3 + i0$$

Question 2:

Express the given complex number in the form a + ib: $i^9 + i^{19}$

Solution:

$$i^{9} + i^{19} = i^{4 \times 2 + 1} + i^{4 \times 4 + 3}$$

= $(i^{4})^{2} \times i + (i^{4})^{4} \times i^{3}$
= $1 \times i + 1 \times (-i)$ [$\because i^{4} = 1, i^{3} = -i$]
= $i + (-i)$
= 0
= $0 + i0$

Question 3:

Express the given complex number in the form a+ib: i^{-39}

Solution:

$$i^{-39} = i^{4\times(-9)-3}$$

$$= (i^{4})^{-9} \times i^{-3}$$

$$= (1)^{-9} \times i^{-3} \quad [\because i^{4} = 1]$$

$$= \frac{1}{i^{3}}$$

$$= \frac{1}{-i} \quad [\because i^{3} = -i]$$

$$= -\frac{1}{i} \times \frac{i}{i}$$

$$= -\frac{i}{i^{2}}$$

$$= \frac{-i}{-1} \quad [\because i^{2} = -1]$$

$$= i$$

$$= 0 + i1$$

Question 4:

Express the given complex number in the form a+ib: 3(7+i7)+i(7+i7)

Solution:

$$3(7+i7)+i(7+i7) = 21+21i+7i+7i^{2}$$

= 21+28i+7×(-1) [:: i² = -1]
= 14+i28

Question 5:

Express the given complex number in the form a+ib: (1-i)-(-1+i6)

Solution: (1-i)-(-1+i6) = 1-i+1-6i= 2-i7

Question 6:

Express the given complex number in the form a+ib: $\left(\frac{1}{5}+i\frac{2}{5}\right)-\left(4+i\frac{5}{2}\right)$

Solution:

$$\begin{pmatrix} \frac{1}{5} + i\frac{2}{5} \\ - \left(4 + i\frac{5}{2}\right) = \frac{1}{5} + \frac{2}{5}i - 4 - \frac{5}{2}i$$

$$= \left(\frac{1}{5} - 4\right) + i\left(\frac{2}{5} - \frac{5}{2}\right)$$

$$= \left(-\frac{19}{5}\right) + i\left(-\frac{21}{10}\right)$$

$$= -\frac{19}{5} - i\frac{21}{10}$$

Question 7:

Express the given complex number in the form a+ib: $\left[\left(\frac{1}{3}+i\frac{7}{3}\right)+\left(4+i\frac{1}{3}\right)\right]-\left(-\frac{4}{3}+i\right)$ Solution:

$$\left[\left(\frac{1}{3}+i\frac{7}{3}\right)+\left(4+i\frac{1}{3}\right)\right]-\left(-\frac{4}{3}+i\right)=\frac{1}{3}+\frac{7}{3}i+4+\frac{1}{3}i+\frac{4}{3}-i$$
$$=\left(\frac{1}{3}+4+\frac{4}{3}\right)+i\left(\frac{7}{3}+\frac{1}{3}-1\right)$$
$$=\frac{17}{3}+i\frac{5}{3}$$

Question 8:

Express the given complex number in the form a+ib: $(1-i)^4$

$$(1-i)^{4} = \left[(1-i)^{2} \right]^{2}$$
$$= \left[1^{2} + i^{2} - 2i \right]^{2}$$
$$= \left[1 - 1 - 2i \right]^{2}$$
$$= \left[2i \right]^{2}$$
$$= 4i^{2} \qquad (\because i^{2} = -1)$$
$$= -4$$

Question 9:
Express the given complex number in the form
$$a + ib: (\frac{1}{3} + 3i)^3$$

Solution:
 $(\frac{1}{3} + 3i)^3 = (\frac{1}{3})^3 + (3i)^3 + 3(\frac{1}{3})(3i)(\frac{1}{3} + 3i)$
 $= \frac{1}{27} + 27i^3 + 3i(\frac{1}{3} + 3i)$
 $= \frac{1}{27} + 27(-i) + i + 9i^2$ (: $i^3 = -i$)
 $= \frac{1}{27} - 27i + i - 9$ (: $i^2 = -1$)
 $= (\frac{1}{27} - 9) - 26i$
 $= -\frac{242}{27} - i26$

Question 10:

Express the given complex number in the form a+ib: $\left(-2-\frac{1}{3}i\right)^3$

$$-2 - \frac{1}{3}i \Big)^{3} = (-1)^{3} \Big(2 + \frac{1}{3}i\Big)^{3}$$

$$= -\Big[2^{3} + \Big(\frac{i}{3}\Big)^{3} + 3\Big(2\Big)\Big(\frac{i}{3}\Big)\Big(2 + \frac{i}{3}\Big)\Big]$$

$$= -\Big[8 + \frac{i^{3}}{27} + 2i\Big(2 + \frac{i}{3}\Big)\Big]$$

$$= -\Big[8 - \frac{i}{27} + 4i + \frac{2}{3}i^{2}\Big] \qquad [\because i^{3} = -i]$$

$$= -\Big[8 - \frac{i}{27} + 4i - \frac{2}{3}\Big] \qquad [\because i^{2} = -1]$$

$$= -\Big[\frac{22}{3} + \frac{107i}{27}\Big]$$

$$= -\frac{22}{3} - i\frac{107}{27}$$

Question 11:

Find the multiplicative inverse of the complex number 4-3i

Solution:

Let z = 4 - 3iThen, $\overline{z} = 4 + 3i$ and $|z|^2 = 4^2 + (-3)^2$ = 16 + 9 = 25

Therefore, the multiplicative inverse of 4-3i is given by

$$z^{-1} = \frac{\overline{z}}{|z|^2}$$
$$= \frac{4+3i}{25}$$
$$= \frac{4}{25} + i\frac{3}{25}$$

Question 12:

Find the multiplicative inverse of the complex number $\sqrt{5} + 3i$

Let $z = \sqrt{5} + 3i$ Then, $\overline{z} = \sqrt{5} - 3i$ and $|z|^2 = (\sqrt{5})^2 + 3^2$ = 5 + 9= 14

Therefore, the multiplicative inverse of $\sqrt{5} + 3i$ is given by

$$z^{-1} = \frac{\overline{z}}{|z|^2}$$
$$= \frac{\sqrt{5} - 3i}{14}$$
$$= \frac{\sqrt{5}}{14} - \frac{3}{14}i$$

Question 13:

Find the multiplicative inverse of the complex number -i

Solution:

Let z = -iThen, $\overline{z} = i$ and $|z|^2 = 1^2$ = 1

Therefore, the multiplicative inverse of -i is given by

$$z^{-1} = \frac{\overline{z}}{|z|^2}$$
$$= \frac{i}{1}$$
$$= i$$

Question 14:

Express the following expression in the form a + ib:

$$\frac{\left(3+i\sqrt{5}\right)\left(3-i\sqrt{5}\right)}{\left(\sqrt{3}+\sqrt{2}i\right)-\left(\sqrt{3}-\sqrt{2}i\right)}$$

$$\frac{(3+i\sqrt{5})(3-i\sqrt{5})}{(\sqrt{3}+\sqrt{2}i)-(\sqrt{3}-\sqrt{2}i)} = \frac{(3)^2 - (i\sqrt{5})^2}{\sqrt{3}+\sqrt{2}i-\sqrt{3}+\sqrt{2}i} \qquad [\because (a+b)(a-b) = a^2 - b^2]$$
$$= \frac{9-5i^2}{2\sqrt{2}i}$$
$$= \frac{9-5(-1)}{2\sqrt{2}i} \qquad [\because i^2 = -1]$$
$$= \frac{9+5}{2\sqrt{2}i}$$
$$= \frac{14}{2\sqrt{2}i} \times \frac{i}{i}$$
$$= \frac{7i}{\sqrt{2}(-1)} \qquad [\because i^2 = -1]$$
$$= \frac{-7i}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$$
$$= \frac{-7\sqrt{2}i}{2}$$
$$= 0 + i \frac{-7\sqrt{2}}{2}$$

EXERCISE 5.2

Question 1:

Find the modulus and argument of the complex number $z = -1 - i\sqrt{3}$

Solution:

 $z = -1 - i\sqrt{3}$ Let $r\cos\theta = -1$ and $r\sin\theta = -\sqrt{3}$

On squaring and adding, we obtain

 $(r\cos\theta)^{2} + (r\sin\theta)^{2} = (-1)^{2} + (-\sqrt{3})^{2}$ $\Rightarrow r^{2}(\cos^{2}\theta + \sin^{2}\theta) = 1 + 3 \qquad [\because \cos^{2}\theta + \sin^{2}\theta = 1]$ $\Rightarrow r^{2} = 4$ $\Rightarrow r = \sqrt{4} = 2 \qquad [\because \text{Conventionally}, r > 0]$

Therefore, Modulus = 2

Hence,
$$2\cos\theta = -1$$
 and $2\sin\theta = -\sqrt{3}$
 $\Rightarrow \cos\theta = -\frac{1}{2} \sin\theta = -\frac{\sqrt{3}}{2}$

Since both the values of $\sin \theta$ and $\cos \theta$ are negative in III quadrant,

Argument
$$= -\left(\pi - \frac{\pi}{3}\right) = \frac{-2\pi}{3}$$

Thus, the modulus and argument of the complex number $-1 - i\sqrt{3}$ are 2 and $\frac{-2\pi}{3}$ respectively.

Question 2:

Find the modulus and argument of the complex number $z = -\sqrt{3} + i$

Solution:

 $z = -\sqrt{3} + i$ Let $r\cos\theta = -\sqrt{3}$ and $r\sin\theta = 1$

On squaring and adding, we obtain

_

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = \left(-\sqrt{3}\right)^{2} + 1^{2}$$

$$\Rightarrow r^{2} = 3 + 1 = 4 \qquad \qquad \left[\because \cos^{2} \theta + \sin^{2} \theta = 1\right]$$

$$\Rightarrow r = \sqrt{4} = 2 \qquad \qquad \left[\because \text{ Conventionally, } r > 0\right]$$

Therefore, Modulus = 2

Hence,
$$2\cos\theta = -\sqrt{3}$$
 and $2\sin\theta = 1$
 $\Rightarrow \cos\theta = -\frac{\sqrt{3}}{2}$ and $\sin\theta = \frac{1}{2}$

Since, θ lies in the quadrant II, $\theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$

Thus, the modulus and argument of the complex number $-\sqrt{3}+i$ are 2 and $\frac{6i}{6}$ respectively.

 5π

Question 3:

Convert the given complex number in polar form: 1-i

Solution:

z=1-iLet $r\cos\theta = 1$ and $r\sin\theta = -1$

On squaring and adding, we obtain

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = 1^{2} + (-1)^{2}$$

$$\Rightarrow r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 1 + 1$$

$$\Rightarrow r^{2} = 2$$

$$\Rightarrow r = \sqrt{2}$$
 [:: Conventionally, $r > 0$]

Therefore,

$$\sqrt{2}\cos\theta = 1$$
 and $\sqrt{2}\sin\theta = -1$
 $\Rightarrow \cos\theta = \frac{1}{\sqrt{2}}$ and $\sin\theta = -\frac{1}{\sqrt{2}}$

Since, θ lies in the quadrant IV, $\theta = -\frac{\pi}{4}$ Hence,

$$1 - i = r \cos \theta + ir \sin \theta$$
$$= \sqrt{2} \cos \left(-\frac{\pi}{4}\right) + i\sqrt{2} \sin \left(-\frac{\pi}{4}\right)$$
$$= \sqrt{2} \left[\cos \left(-\frac{\pi}{4}\right) + i \sin \left(-\frac{\pi}{4}\right)\right]$$

Thus, this is the required polar form.

Question 4:

Convert the given complex number in polar form: -1+i

Solution:

z = -1 + iLet $r \cos \theta = -1$ and $r \sin \theta = 1$

On squaring and adding, we obtain

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = (-1)^{2} + 1^{2}$$

$$\Rightarrow r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 1 + 1$$

$$\Rightarrow r^{2} = 2$$

$$\Rightarrow r = \sqrt{2}$$

[:: Conventionally, $r > 0$]

Therefore,

$$\sqrt{2}\cos\theta = -1 \text{ and } \sqrt{2}\sin\theta = 1$$

 $\Rightarrow \cos\theta = -\frac{1}{\sqrt{2}} \sin\theta = \frac{1}{\sqrt{2}}$

Since, θ lies in the quadrant II, $\theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$ Hence,

$$-1 + i = r \cos \theta + ir \sin \theta$$
$$= \sqrt{2} \cos \frac{3\pi}{4} + i\sqrt{2} \sin \frac{3\pi}{4}$$
$$= \sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$$

Thus, this is the required polar form.

Question 5:

Convert the given complex number in polar form: -1-i

z = -1 - iLet $r \cos \theta = -1$ and $r \sin \theta = -1$

On squaring and adding, we obtain

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = (-1)^{2} + (-1)^{2}$$

$$\Rightarrow r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 1 + 1$$

$$\Rightarrow r^{2} = 2$$

$$\Rightarrow r = \sqrt{2}$$
 [:: Conventionally, $r > 0$]

Therefore,

$$\sqrt{2}\cos\theta = -1$$
 and $\sqrt{2}\sin\theta = -1$
 $\Rightarrow \cos\theta = -\frac{1}{\sqrt{2}} \sin\theta = -\frac{1}{\sqrt{2}}$

$$\theta = -\left(\pi - \frac{\pi}{4}\right) = -\frac{3}{4}$$

Since, θ lies in the quadrant III, Hence,

$$-1 - i = r \cos \theta + ir \sin \theta$$
$$= \sqrt{2} \cos \frac{-3\pi}{4} + i\sqrt{2} \sin \frac{-3\pi}{4}$$
$$= \sqrt{2} \left(\cos \frac{-3\pi}{4} + i \sin \frac{-3\pi}{4} \right)$$

Thus, this is the required polar form.

Question 6:

Convert the given complex number in polar form: -3

Solution:

z = -3Let $r \cos \theta = -3$ and $r \sin \theta = 0$

On squaring and adding, we obtain

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = (-3)^{2} + (0)^{2}$$

$$\Rightarrow r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 9$$

$$\Rightarrow r^{2} = 9$$

$$\Rightarrow r = 3$$
 [:: Conventionally, $r > 0$]

Therefore,

 $3\cos\theta = -3$ and $3\sin\theta = 0$ $\Rightarrow \cos\theta = -1$ and $\sin\theta = 0$

Since the θ lies in the quadrant II, $\theta = \pi$

Hence,

 $-3 = r\cos\theta + ir\sin\theta$ $= 3\cos\pi + i3\sin\pi$ $= 3(\cos\pi + i\sin\pi)$

Thus, this is the required polar form.

Question 7:

Convert the given complex number in polar form: $\sqrt{3} + i$

Solution:

 $z = \sqrt{3} + i$ Let $r\cos\theta = \sqrt{3}$ and $r\sin\theta = 1$

On squaring and adding, we obtain

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = \left(\sqrt{3}\right)^{2} + 1^{2}$$
$$\Rightarrow r^{2} \left(\cos^{2} \theta + \sin^{2} \theta\right) = 3 + 1$$
$$\Rightarrow r^{2} = 4$$
$$\Rightarrow r = \sqrt{4} = 2$$

[Conventionally, r > 0]

Therefore,

$$2\cos\theta = \sqrt{3} \text{ and } 2\sin\theta = 1$$

 $\Rightarrow \cos\theta = \frac{\sqrt{3}}{2} \text{ and } \sin\theta = \frac{1}{2}$

Since, θ lies in quadrant I, $\theta = \frac{\pi}{6}$

Hence,

$$\sqrt{3} + i = r\cos\theta + ir\sin\theta$$
$$= 2\cos\frac{\pi}{6} + i2\sin\frac{\pi}{6}$$
$$= 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

Thus, this is the required polar form.

Question 8:

Convert the given complex number in polar form: i

Solution:

z = iLet $r \cos \theta = 0$ and $r \sin \theta = 1$

On squaring and adding, we obtain

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = 0^{2} + 1^{2}$$
$$\Rightarrow r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 1$$
$$\Rightarrow r^{2} = 1$$
$$\Rightarrow r = \sqrt{1} = 1$$

Therefore,

$$\cos\theta = 0$$
 and $\sin\theta = 1$

[Conventionally, r > 0]

Since, θ lies in quadrant I, $\theta = \frac{\pi}{2}$ Hence,

$$i = r\cos\theta + ir\sin\theta$$
$$= \cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$$

Thus, this is the required polar form.

EXERCISE 5.3

Question 1:

Solve the equation $x^2 + 3 = 0$

Solution:

The given quadratic equation is $x^2 + 3 = 0$ On comparing the given equation with $ax^2 + bx + c = 0$, We obtain a = 1, b = 0, and c = 3

Therefore, the discriminant of the given equation is

$$D = b^{2} - 4ac$$
$$= 0^{2} - 4 \times 1 \times 3$$
$$= -12$$

Therefore, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-0 \pm \sqrt{-12}}{2 \times 1}$$
$$= \frac{\pm \sqrt{12}i}{2}$$
$$= \frac{\pm 2\sqrt{3}i}{2}$$
$$= \pm \sqrt{3}i$$

 $\sqrt{-1} = i$

Question 2:

Solve the equation $2x^2 + x + 1 = 0$

Solution:

The given quadratic equation is $2x^2 + x + 1 = 0$ On comparing the given equation with $ax^2 + bx + c = 0$, We obtain a = 2, b = 1, and c = 1

Therefore, the discriminant of the given equation is

$$D = b^2 - 4ac$$
$$= 1^2 - 4 \times 2 \times 1$$
$$= -7$$

Therefore, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{-7}}{2 \times 2}$$
$$= \frac{-1 \pm \sqrt{7}i}{4} \qquad \qquad \left[\because \sqrt{-1} = i\right]$$

Question 3:

Solve the equation $x^2 + 3x + 9 = 0$

Solution:

The given quadratic equation is $x^2 + 3x + 9 = 0$ On comparing the given equation with $ax^2 + bx + c = 0$, We obtain a = 1, b = 3, and c = 9

Therefore, the discriminant of the given equation is

$$D = b^{2} - 4ac$$
$$= 3^{2} - 4 \times 1 \times 9$$
$$= -27$$

Hence, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-3 \pm \sqrt{-27}}{2 \times 1}$$
$$= \frac{-3 \pm 3\sqrt{-3}}{2}$$
$$= \frac{-3 \pm 3\sqrt{3}i}{2}$$
$$\begin{bmatrix} \because \sqrt{-1} = i \end{bmatrix}$$

Question4:

Solve the equation $-x^2 + x - 2 = 0$

Solution:

The given quadratic equation is $-x^2 + x - 2 = 0$ On comparing the given equation with $ax^2 + bx + c = 0$, We obtain a = -1, b = 1 and c = -2

Therefore, the discriminant of the given equation is

$$D = b2 - 4ac$$

= 1² - 4×(-1)×(-2)
= -7

Hence, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{-7}}{2 \times (-1)}$$
$$= \frac{-1 \pm \sqrt{7}i}{-2} \qquad \left[\sqrt{-1} = i\right]$$

Question 5:

Solve the equation $x^2 + 3x + 5 = 0$

Solution:

The given quadratic equation is $x^2 + 3x + 5 = 0$ On comparing the given equation with $ax^2 + bx + c = 0$, We obtain a = 1, b = 3, and c = 5

Therefore, the discriminant of the given equation is

$$D = b^{2} - 4ac$$
$$= 3^{2} - 4 \times 1 \times 5$$
$$= -11$$

Hence, the required solutions are

$$\frac{-b\pm\sqrt{D}}{2a} = \frac{-3\pm\sqrt{-11}}{2\times 1}$$
$$= \frac{-3\pm\sqrt{11}i}{2} \qquad \qquad \left[\sqrt{-1}=i\right]$$

Question 6:

Solve the equation $x^2 - x + 2 = 0$

Solution:

The given quadratic equation is $x^2 - x + 2 = 0$ On comparing the given equation with $ax^2 + bx + c = 0$, We obtain a = 1, b = -1, and c = 2

Therefore, the discriminant of the given equation is

$$D = b^{2} - 4ac$$
$$= (-1)^{2} - 4 \times 1 \times 2$$
$$= -7$$

Hence, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-(-1) \pm \sqrt{-7}}{2 \times 1}$$
$$= \frac{1 \pm \sqrt{7}i}{2} \qquad \qquad \left[\because \sqrt{-1} = i\right]$$

Question 7:

Solve the equation $\sqrt{2}x^2 - x + \sqrt{2} = 0$

Solution:

The given quadratic equation is $\sqrt{2}x^2 - x + \sqrt{2} = 0$ On comparing the given equation with $ax^2 + bx + c = 0$, We obtain $a = \sqrt{2}, b = -1$, and $c = \sqrt{2}$

Therefore, the discriminant of the given equation is

$$D = b^{2} - 4ac$$
$$= (-1)^{2} - 4 \times \sqrt{2} \times \sqrt{2}$$
$$= -7$$

Hence, the required solutions are

Question 8:

Solve the equation $\sqrt{3}x^2 - \sqrt{2}x + 3\sqrt{3} = 0$

Solution:

The given quadratic equation is $\sqrt{3}x^2 - \sqrt{2}x + 3\sqrt{3} = 0$ On comparing the given equation with $ax^2 + bx + c = 0$, We obtain $a = \sqrt{3}, b = -\sqrt{2}$, and $c = 3\sqrt{3}$

Therefore, the discriminant of the given equation is

$$D = b^{2} - 4ac$$
$$= \left(-\sqrt{2}\right)^{2} - 4 \times \left(\sqrt{3}\right) \times \left(3\sqrt{3}\right)$$
$$= -34$$

Hence, the required solutions are

Question 9:

Solve the equation
$$x^2 + x + \frac{1}{\sqrt{2}} = 0$$

Solution:

The given quadratic equation is $x^2 + x + \frac{1}{\sqrt{2}} = 0$ This equation can also be written as $\sqrt{2}x^2 + \sqrt{2}x + 1 = 0$

On comparing the given equation with $ax^2 + bx + c = 0$, We obtain $a = \sqrt{2}$, $b = \sqrt{2}$ and c = 1

Therefore, the discriminant of the given equation is

$$D = b^{2} - 4ac$$
$$= \left(\sqrt{2}\right)^{2} - 4 \times \left(\sqrt{2}\right) \times 1$$
$$= 2 - 4\sqrt{2}$$

Hence, the required solutions are

$$\frac{-b\pm\sqrt{D}}{2a} = \frac{-\sqrt{2}\pm\sqrt{2-4\sqrt{2}}}{2\times\sqrt{2}}$$
$$= \frac{-\sqrt{2}\pm\sqrt{2}\left(1-2\sqrt{2}\right)}{2\sqrt{2}}$$
$$= \left(\frac{-\sqrt{2}\pm\sqrt{2}\left(\sqrt{2\sqrt{2}-1}\right)i}{2\sqrt{2}}\right) \qquad \qquad \left[\because \sqrt{-1}=i\right]$$
$$= \frac{-1\pm\left(\sqrt{2\sqrt{2}-1}\right)i}{2}$$

Question 10:

Solve the equation $x^2 + \frac{x}{\sqrt{2}} + 1 = 0$

Solution:

The given quadratic equation is $x^2 + \frac{x}{\sqrt{2}} + 1 = 0$ This equation can also be written as $\sqrt{2x^2 + x} + \sqrt{2} = 0$ On comparing the given equation with $ax^2 + bx + c = 0$, We obtain $a = \sqrt{2}, b = 1$ and $c = \sqrt{2}$

Therefore, the discriminant of the given equation is

$$D = b^{2} - 4ac$$

= $(1)^{2} - 4 \times (\sqrt{2}) \times (\sqrt{2})$
= $1 - 8$
= -7

Hence, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{-7}}{2 \times \sqrt{2}}$$
$$= \frac{-1 \pm \sqrt{7}i}{2\sqrt{2}} \qquad \qquad \left[\because \sqrt{-1} = i\right]$$

MISCELLANEOUS EXERCISE

Question 1:

Evaluate: $\left[i^{18} + \left(\frac{1}{i}\right)^{25}\right]^3$

Solution:

$$\begin{bmatrix} i^{18} + \left(\frac{1}{i}\right)^{25} \end{bmatrix}^3 = \begin{bmatrix} i^{4\times 4+2} + \frac{1}{i^{4\times 6+1}} \end{bmatrix}^3$$

$$= \begin{bmatrix} \left(i^4\right)^4 \times i^2 + \frac{1}{\left(i^4\right)^6 \times i} \end{bmatrix}^3$$

$$= \begin{bmatrix} i^2 + \frac{1}{i} \end{bmatrix}^3$$

$$= \begin{bmatrix} -1 + \frac{1}{i} \times \frac{i}{i} \end{bmatrix}^3$$

$$= \begin{bmatrix} -1 + \frac{i}{i^2} \end{bmatrix}^3$$

$$= \begin{bmatrix} -1 - i \end{bmatrix}^3$$

$$= (-1)^3 \begin{bmatrix} 1 + i \end{bmatrix}^3$$

$$= -\begin{bmatrix} 1^3 + i^3 + 3 \times 1 \times i (1+i) \end{bmatrix}$$

$$= -\begin{bmatrix} 1 - i^3 + 3i + 3i^2 \end{bmatrix}$$

$$= -\begin{bmatrix} 1 - i + 3i - 3 \end{bmatrix}$$

$$= -\begin{bmatrix} -2 + 2i \end{bmatrix}$$

Question 2:

For any two complex numbers z_1 and z_2 , prove that Re (z_1z_2) = Re z_1 Re z_2 – Im z_1 Im z_2

Let
$$z_1 = x_1 + iy_1$$
 and $z_2 = x_2 + iy_2$

$$z_1 z_2 = (x_1 + iy_1)(x_2 + iy_2)$$

$$= x_1(x_2 + iy_2) + iy_1(x_2 + iy_2)$$

$$= x_1 x_2 + ix_1 y_2 + iy_1 x_2 + i^2 y_1 y_2$$

$$= x_1 x_2 + ix_1 y_2 + iy_1 x_2 - y_1 y_2$$

$$[\because i^2 = -1]$$

$$= (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + y_1 x_2)$$

$$\Rightarrow \operatorname{Re}(z_1 z_2) = x_1 x_2 - y_1 y_2$$

$$\Rightarrow \operatorname{Re}(z_1 z_2) = \operatorname{Re} z_1 \operatorname{Re} z_2 - \operatorname{Im} z_1 \operatorname{Im} z_2$$

Hence, proved.

Question 3:

Reduce $\left(\frac{1}{1-4i} - \frac{2}{1+i}\right) \left(\frac{3-4i}{5+i}\right)$ to the standard form

$$\begin{split} \left(\frac{1}{1-4i} - \frac{2}{1+i}\right) & \left(\frac{3-4i}{5+i}\right) = \left[\frac{(1+i)-2(1-4i)}{(1-4i)(1+i)}\right] \left[\frac{3-4i}{5+i}\right] \\ & = \left[\frac{1+i-2+8i}{1+i-4i-4i^2}\right] \left[\frac{3-4i}{5+i}\right] \\ & = \left[\frac{-1+9i}{5-3i}\right] \left[\frac{3-4i}{5+i}\right] \\ & = \left[\frac{-3+4i+27i-36i^2}{25+5i-15i-3i^2}\right] \\ & = \frac{33+31i}{28-10i} \\ & = \frac{33+31i}{2(14-5i)} \\ & = \frac{(33+31i)}{2(14-5i)} \times \frac{(14+5i)}{(14+5i)} \\ & = \frac{462+165i+434i+155i^2}{2\left[(14)^2-(5i)^2\right]} \\ & = \frac{307+599i}{2(196-25i^2)} \\ & = \frac{307+599i}{2(221)} \\ & = \frac{307+599i}{442} \frac{1}{442} \end{split}$$

This is the required standard form.
Question 4: \end{split}

If
$$x - iy = \sqrt{\frac{a - ib}{c - id}}$$
 prove that $(x^2 + y^2)^2 = \frac{a^2 + b^2}{c^2 + d^2}$

Solution:

$$x - iy = \sqrt{\frac{a - ib}{c - id}} = \sqrt{\frac{a - ib}{c - id}} \times \frac{c + id}{c + id}$$
$$= \sqrt{\frac{(ac + bd) + i(ad - bc)}{c^2 + d^2}}$$
$$(x - iy)^2 = \frac{(ac + bd) + i(ad - bc)}{c^2 + d^2}$$
$$x^2 - y^2 - 2ixy = \frac{(ac + bd)}{c^2 + d^2} + i\frac{(ad - bc)}{c^2 + d^2}$$

 $\begin{bmatrix} On multiplying numerator and \\ denominator by (c+id) \end{bmatrix}$

On comparing real and imaginary parts, we obtain

$$x^{2} - y^{2} = \frac{ac + bd}{c^{2} + d^{2}}, -2xy = \frac{ad - bc}{c^{2} + d^{2}} \qquad \dots (1)$$

Since,

$$(x^{2} + y^{2})^{2} = (x^{2} - y^{2})^{2} + (2xy)^{2}$$

$$= \left(\frac{ac + bd}{c^{2} + d^{2}}\right)^{2} + \left(\frac{ad - bc}{c^{2} + d^{2}}\right)^{2} \qquad [Using (1)]$$

$$= \frac{a^{2}c^{2} + b^{2}d^{2} + 2acbd + a^{2}d^{2} + b^{2}c^{2} - 2abcd}{(c^{2} + d^{2})^{2}}$$

$$= \frac{a^{2}c^{2} + b^{2}d^{2} + a^{2}d^{2} + b^{2}c^{2}}{(c^{2} + d^{2})^{2}}$$

$$= \frac{a^{2}(c^{2} + d^{2}) + b^{2}(c^{2} + d^{2})}{(c^{2} + d^{2})^{2}}$$

$$= \frac{(a^{2} + b^{2})(c^{2} + d^{2})}{(c^{2} + d^{2})^{2}}$$

$$= \frac{(a^{2} + b^{2})}{(c^{2} + d^{2})^{2}}$$

Hence, proved.

Question 5:

Convert the following in the polar form:

$\frac{1+7i}{2}$		1+3 <i>i</i>
(i) $(2-i)^2$	(ii	$) \overline{1-2i}$

Solution:

(i) Here,

$$z = \frac{1+7i}{(2-i)^2}$$

= $\frac{1+7i}{(2-i)^2} = \frac{1+7i}{4+i^2-4i} = \frac{1+7i}{4-1-4i}$
= $\frac{1+7i}{3-4i} \times \frac{3+4i}{3+4i} = \frac{3+4i+21i+28i^2}{3^2+4^2}$
= $\frac{3+25i-28}{25} = \frac{-25+25i}{25}$
= $-1+i$

Let $r\cos\theta = -1$ and $r\sin\theta = 1$

On squaring and adding, we obtain

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = (-1)^{2} + 1^{2}$$

$$r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 1 + 1$$

$$r^{2} = 2$$

$$r = \sqrt{2}$$
[Conventionally, $r > 0$]

 $\frac{3\pi}{4}$

Therefore,

$$\sqrt{2}\cos\theta = -1 \text{ and } \sqrt{2}\sin\theta = 1$$

 $\Rightarrow \cos\theta = -\frac{1}{\sqrt{2}} \sin\theta = \frac{1}{\sqrt{2}}$

Since, θ lies in the quadrant II, $\theta = \pi - \frac{\pi}{4}$ Hence,

$$z = r\cos\theta + ir\sin\theta$$
$$= \sqrt{2}\cos\frac{3\pi}{4} + i\sqrt{2}\sin\frac{3\pi}{4}$$
$$= \sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$$

This is the required polar form.

(ii) Here,

$$z = \frac{1+3i}{1-2i}$$

= $\frac{1+3i}{1-2i} \times \frac{1+2i}{1+2i}$
= $\frac{1+2i+3i+6i^2}{1^2+2^2} = \frac{1+5i-6}{5}$
= $\frac{-5+5i}{5} = -1+i$

Let $r\cos\theta = -1$ and $r\sin\theta = 1$

On squaring and adding, we obtain

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = (-1)^{2} + 1^{2}$$

$$r^{2} (\cos^{2} \theta + \sin^{2} \theta) = 1 + 1$$

$$r^{2} = 2$$

$$r = \sqrt{2}$$
[Conventionally, $r > 0$]

Therefore,

$$\sqrt{2}\cos\theta = -1 \text{ and } \sqrt{2}\sin\theta = 1$$

 $\Rightarrow \cos\theta = -\frac{1}{\sqrt{2}} \quad \sin\theta = \frac{1}{\sqrt{2}}$

Since, θ lies in the quadrant II, $\theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$ Hence,

$$z = r\cos\theta + ir\sin\theta$$
$$= \sqrt{2}\cos\frac{3\pi}{4} + i\sqrt{2}\sin\frac{3\pi}{4}$$
$$= \sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$$

This is the required polar form.

Question 6:

Solve the equation $3x^2$

$$x^{2} - 4x + \frac{20}{3} = 0$$

Solution:

The given quadratic equation is
$$3x^2 - 4x + \frac{20}{3} = 0$$

This equation can also be written as $9x^2 - 12x + 20 = 0$

On comparing this equation with $ax^2 + bx + c = 0$, we obtain a = 9, b = -12 and c = 20

Therefore, the discriminant of the given equation is

$$D = b^{2} - 4ac$$

= $(-12)^{2} - 4 \times 9 \times 20$
= $144 - 720$
= -576

Hence, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-(-12) \pm \sqrt{-576}}{2 \times 9}$$
$$= \frac{12 \pm \sqrt{576}i}{18} \qquad \left[\because \sqrt{-1} = i\right]$$
$$= \frac{12 \pm 24i}{18}$$
$$= \frac{6(2 \pm 4i)}{18}$$
$$= \frac{2 \pm 4i}{3}$$
$$= \frac{2 \pm 4i}{3}$$

Question 7:

Solve the equation
$$x^2 - 2x + \frac{3}{2} = 0$$

Solution:

The given quadratic equation is $x^2 - 2x + \frac{3}{2} = 0$ This equation can also be written as $2x^2 - 4x + 3 = 0$

On comparing this equation with $ax^2 + bx + c = 0$, we obtain a = 2, b = -4 and c = 3

Therefore, the discriminant of the given equation is

$$D = b^{2} - 4ac$$
$$= (-4)^{2} - 4 \times 2 \times 3$$
$$= 16 - 24$$
$$= -8$$

Hence, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-(-4) \pm \sqrt{-8}}{2 \times 2}$$
$$= \frac{4 \pm 2\sqrt{2}i}{4} \qquad \qquad \begin{bmatrix} \because \sqrt{-1} = i \end{bmatrix}$$
$$= \frac{2 \pm \sqrt{2}i}{2}$$
$$= 1 \pm \frac{\sqrt{2}}{2}i$$

Question 8:

Solve the equation $27x^2 - 10x + 1 = 0$

Solution:

The given quadratic equation is $27x^2 - 10x + 1 = 0$

On comparing this equation with $ax^2 + bx + c = 0$, we obtain a = 27, b = -10 and c = 1

Therefore, the discriminant of the given equation is

$$D = b^{2} - 4ac$$

= $(-10)^{2} - 4 \times 27 \times 1$
= $100 - 108$
= -8

Hence, the required solutions are

Question 9:

Solve the equation $21x^2 - 28x + 10 = 0$

The given quadratic equation is $21x^2 - 28x + 10 = 0$ On comparing this equation with $ax^2 + bx + c = 0$, we obtain a = 21, b = -28 and c = 10

Therefore, the discriminant of the given equation is

$$D = b^{2} - 4ac$$

= (-28)² - 4×21×10
= 784 - 840
= -56

Hence, the required solutions are

$$\frac{-b \pm \sqrt{D}}{2a} = \frac{-(-28) \pm \sqrt{-56}}{2 \times 21}$$

= $\frac{28 \pm \sqrt{56i}}{42}$ [: $\sqrt{-1} = i$]
= $\frac{28 \pm 2\sqrt{14}i}{42}$
= $\frac{28}{42} \pm \frac{2\sqrt{14}}{42}i$
= $\frac{2}{3} \pm \frac{\sqrt{14}}{21}i$
Question 10:

If $z_1 = 2 - i$, $z_2 = 1 + i$, find $\left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + 1} \right|$

Solution:

 $z_1 = 2 - i$, $z_2 = 1 + i$ Therefore,

$$\begin{aligned} \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + 1} \right| &= \left| \frac{(2 - i) + (1 + i) + 1}{(2 - i) - (1 + i) + 1} \right| \\ &= \left| \frac{4}{2 - 2i} \right| = \left| \frac{4}{2(1 - i)} \right| \\ &= \left| \frac{2}{1 - i} \times \frac{1 + i}{1 + i} \right| = \left| \frac{2(1 + i)}{(1^2 - i^2)} \right| \\ &= \left| \frac{2(1 + i)}{1 + 1} \right| \qquad [i^2 = -1] \\ &= \left| \frac{2(1 + i)}{2} \right| \\ &= |1 + i| = \sqrt{1^2 + 1^2} \\ &= \sqrt{2} \end{aligned}$$

value of $\left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + 1} \right|$ is $\sqrt{2}$.

Thus, the

Question 11:

If
$$a+ib = \frac{(x+i)^2}{2x^2+1}$$
, prove that $a^2 + b^2 = \frac{(x^2+1)^2}{(2x^2+1)^2}$

Solution:

$$a+ib = \frac{(x+i)^2}{2x^2+1}$$

$$a+ib = \frac{(x+i)^2}{2x^2+1} = \frac{x^2+i^2+i2x}{2x^2+1}$$

$$= \frac{x^2-1+i2x}{2x^2+1}$$

$$= \frac{x^2-1}{2x^2+1} + i\left(\frac{2x}{2x^2+1}\right)$$

On comparing real and imaginary parts, we obtain

$$a = \frac{x^2 - 1}{2x^2 + 1}$$
 and $b = \frac{2x}{2x^2 + 1}$

Since,

$$a^{2} + b^{2} = \left(\frac{x^{2} - 1}{2x^{2} + 1}\right)^{2} + \left(\frac{2x}{2x^{2} + 1}\right)^{2}$$
$$= \frac{x^{4} + 1 - 2x^{2} + 4x^{2}}{\left(2x^{2} + 1\right)^{2}}$$
$$= \frac{x^{4} + 1 + 2x^{2}}{\left(2x^{2} + 1\right)^{2}}$$
$$a^{2} + b^{2} = \frac{\left(x^{2} + 1\right)^{2}}{\left(2x^{2} + 1\right)^{2}}$$

Hence, proved.

Question 12:

Let
$$z_1 = 2 - i$$
, $z_2 = -2 + i$. Find
(i) $\operatorname{Re}\left(\frac{z_1 z_2}{\overline{z_1}}\right)$, (ii) $\operatorname{Im}\left(\frac{1}{z_1 \overline{z_1}}\right)$

Solution:

(i) It is given that
$$z_1 = 2 - i$$
, $z_2 = -2 + i$
 $z_1 z_2 = (2 - i)(-2 + i)$
 $= -4 + 2i + 2i - i^2$
 $= -4 + 4i - (-1)$
 $= -3 + 4i$

Now, $\overline{z}_1 = 2 + i$

Hence,
$$\frac{\overline{z_1}\overline{z_2}}{\overline{z_1}} = \frac{-3+4i}{2+i}$$

On multiplying numerator and denominator by (2-i), we obtain

$$\frac{z_1 z_2}{\overline{z_1}} = \frac{(-3+4i)(2-i)}{(2+i)(2-i)} = \frac{-6+3i+8i-4i^2}{2^2+1^2} = \frac{-6+11i-4(-1)}{5}$$
$$= \frac{-2+11i}{5} = \frac{-2}{5} + \frac{11}{5}i$$

On comparing real parts, we obtain

$$\operatorname{Re}\left(\frac{z_1 z_2}{\overline{z}_1}\right) = -\frac{2}{5}$$

(ii)
$$\frac{1}{z_1\overline{z_1}} = \frac{1}{(2+i)(2-i)} = \frac{1}{(2)^2 + (1)^2} = \frac{1}{5}$$

On comparing imaginary parts, we obtain

$$\operatorname{Im}\left(\frac{1}{z_1\overline{z_1}}\right) = 0$$

Question 13:

Find the modulus and argument of the complex number $\overline{1-3i}$ Solution:

1+2i

Let $z = \frac{1+2i}{1-3i}$,

Then,

$$z = \frac{1+2i}{1-3i} \times \frac{1+3i}{1+3i} = \frac{1+2i+3i+6i^2}{1^2+3^2} = \frac{1+5i+6(-1)}{10}$$
$$= \frac{-5+5i}{10} = \frac{-5}{10} + \frac{5}{10}i = \frac{-1}{2} + \frac{1}{2}i$$

Let $z = r \cos \theta + ir \sin \theta$

i.e., $r\cos\theta = -\frac{1}{2}$ and $r\sin\theta = \frac{1}{2}$

On squaring and adding, we obtain

$$r^{2}\left(\cos^{2}\theta + \sin^{2}\theta\right) = \left(-\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2}$$
$$\Rightarrow r^{2} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$
$$\Rightarrow r = \frac{1}{\sqrt{2}}$$
 [Conventionally, $r > 0$]

Therefore,

$$\frac{1}{\sqrt{2}}\cos\theta = -\frac{1}{2} \text{ and } \frac{1}{\sqrt{2}}\sin\theta = \frac{1}{2}$$
$$\Rightarrow \cos\theta = \frac{-1}{\sqrt{2}} \text{ and } \sin\theta = \frac{1}{\sqrt{2}}$$

Since, θ lies in the quadrant II, $\theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$

Thus, the modulus and argument of the given complex number are $\frac{1}{\sqrt{2}}$ and $\frac{3\pi}{4}$ respectively.

Question 14:

Find the real numbers x and y if (x-iy)(3+5i) is the conjugate of -6-24i

Solution:

Let, z = (x - iy)(3 + 5i) $= 3x - i3y + i5x - i^{2}5y$ = 3x + i5x - i3y + 5y = (3x + 5y) + i(5x - 3y)

Then, $\overline{z} = (3x+5y)-i(5x-3y)$

It is given that, $\overline{z} = -6 - 24i$

Therefore, (3x+5y)-i(5x-3y) = -6-24i

Equating real and imaginary parts, we obtain

3x + 5y = -6 ...(1) 5x - 3y = 24 ...(2) matrix (1) have 2 and 200

Multiplying equation (1) by 3 and equation (2) by 5 and then adding them, we obtain

9x + 15y = -1825x - 15y = 120

On adding both equations we get,

$$34x = 102$$
$$x = \frac{102}{34}$$
$$x = 3$$

Putting the value of x in equation (1), we obtain

$$3(3) + 5y = -6$$

$$5y = -6 - 9$$

$$y = \frac{-15}{5}$$

$$y = -3$$

Thus, the values of x = 3 and y = -3

Question 15:

Find the modulus of $\frac{1+i}{1-i} - \frac{1-i}{1+i}$

Solution:

$$\frac{1+i}{1-i} - \frac{1-i}{1+i} = \frac{(1+i)^2 - (1-i)^2}{(1-i)(1+i)}$$
$$= \frac{1+i^2 + 2i - 1 - i^2 + 2i}{2}$$
$$= \frac{4i}{2}$$
$$= 2i$$

Therefore,

 $\begin{vmatrix} \frac{1+i}{1-i} - \frac{1-i}{1+i} \end{vmatrix} = |2i|$ $= \sqrt{2^2}$ = 2

Question 16:

If
$$(x+iy)^3 = u+iv$$
, then show that $\frac{u}{x} + \frac{v}{y} = 4(x^2 - y^2)$

Solution:

It is given that
$$(x + iy)^3 = u + iv$$

$$\Rightarrow x^3 + (iy)^3 + 3 \times x \times iy(x + iy) = u + iv$$

$$\Rightarrow x^3 + i^3y^3 + 3x^2yi + 3xy^2i^2 = u + iv$$

$$\Rightarrow x^3 - iy^3 + 3x^2yi - 3xy^2 = u + iv$$

$$\Rightarrow (x^3 - 3xy^2) + i(3x^2y - y^3) = u + iv$$

On equating real and imaginary parts, we obtain

$$u = x^3 - 3xy^2, v = 3x^2y - y^3$$

Therefore,

$$\frac{u}{x} + \frac{v}{y} = \frac{x^3 - 3xy^2}{x} + \frac{3x^2y - y^3}{y}$$
$$= \frac{x(x^2 - 3y^2)}{x} + \frac{y(3x^2 - y^2)}{y}$$
$$= x^2 - 3y^2 + 3x^2 - y^2$$
$$= 4x^2 - 4y^2$$
$$= 4(x^2 - y^2)$$

Hence, $\frac{u}{x} + \frac{v}{y} = 4\left(x^2 - y^2\right)$ proved.

Question 17:

If α and β are different complex numbers with $|\beta| = 1$, then find $\frac{|\beta|}{1 - \overline{\alpha}\beta}$

 $\beta - \alpha$

Solution:

Let $\alpha = a + ib$ and $\beta = x + iy$

It is given that, $|\beta| = 1$

Therefore,

$$\sqrt{x^2 + y^2} = 1$$

 $x^2 + y^2 = 1$...(*i*)

Question 18:

Find the number of non-zero integral solutions of the equation $|1-i|^x = 2^x$

$$|1-i|^{x} = 2^{x}$$
$$\left(\sqrt{1^{2} + (-1)^{2}}\right) = 2^{x}$$
$$\left(\sqrt{2}\right)^{x} = 2^{x}$$
$$2^{x/2} = 2^{x}$$
$$\frac{x}{2} = x$$
$$x = 2x$$
$$2x - x = 0$$
$$x = 0$$

Thus, 0 is the only integral solution of the given equation. Therefore, the number of non-zero integral solutions of the given equation is 0.

Question 19:

If
$$(a+ib)(c+id)(e+if)(g+ih) = A+iB$$
, then show that:
 $(a^2+b^2)(c^2+d^2)(e^2+f^2)(g^2+h^2) = A^2+B^2$

Solution:

It is given that, (a+ib)(c+id)(e+if)(g+ih) = A+iB

Therefore,

$$\begin{aligned} |(a+ib)(c+id)(e+if)(g+ih)| &= |A+iB| \\ |(a+ib)| \times |(c+id)| \times |(e+if)| \times |(g+ih)| &= |A+iB| \\ \sqrt{a^2+b^2} \times \sqrt{c^2+d^2} \times \sqrt{e^2+f^2} \times \sqrt{g^2+h^2} &= \sqrt{A^2+B^2} \\ \sqrt{(a^2+b^2)(c^2+d^2)(e^2+f^2)(g^2+h^2)} &= \sqrt{A^2+B^2} \end{aligned}$$

On squaring both sides, we obtain

$$(a^{2}+b^{2})(c^{2}+d^{2})(e^{2}+f^{2})(g^{2}+h^{2}) = A^{2}+B^{2}$$

Hence, proved.

Question 20:

If
$$\left(\frac{1+i}{1-i}\right)^m = 1$$
 then find the least positive integral value of m.

It is given that
$$\left(\frac{1+i}{1-i}\right) = 1$$

 $\left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^m = 1$
 $\left(\frac{\left(\frac{1+i}{1^2+1^2}\right)^m}{1^2+1^2} = 1$
 $\left(\frac{1^2+i^2+2i}{2}\right)^m = 1$
 $\left(\frac{1-1+2i}{2}\right)^m = 1$
 $\left(\frac{2i}{2}\right)^m = 1$
 $i^m = 1$
 $i^m = i^{4k}$

Hence, m = 4k, where k is some integer.

Since, the least positive integer is 1, $m = 4 \times 1 = 4$

Thus, the least positive integral value of m = 4